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1. F’hys.: Condens. Matter 7 (1995) 87414756. F’rinted in the UK 

Transport properties in a hydrogen-bonded chain model 
including dipol+dipole interactions 

I Chochliouros and I Pouget 
Labomtoire de Modelisation en M b i q u e  (associ6 au CNRS). Univenit6 Pierre et Marie 
Curie. Tour 66.4 place Jussieu. 75752 Paris Cidex 05, Fmce 

Received 31 July 1995 

Abstract The proton mobility and Iranspo~I of energy in hydrogen-bonded chains is an 
interesting problem because they play a crucial role in the interpretation of terrain biological 
processes. We propose a physical model which consists basically of two one-dimensional 
harmonically mupled sublanices mmponding  to the oxygens and protons, respectively. Our 
study starts with an improved form of the Antonchenkc-Davydov-Zolotaryuk (ADZ) model in 
which the dipoledipole interacuons due to the praon motion are introduced. These interactions 
may affect the response of the nonlinear excitations propagating along the chain. We look for 
a solution for which the motion of oxygen ions can be neglected. We find a @-type equation 
which admits nonlinear excitatiom of solitary-wave-type. In our mathematical approximation 
we find different classes of solution for the analytical description of the protoo motion. The 
expressions and the corresponding necessary conditions for the existence of these solutions are 
given. We present numerid simulations for certain cases and examine the potential involved 
in the system. The introduction of the dipole interaction produces an influence on the elecbic 
field of the system which means that the proton motion is also affected, making the proton 
conductivity much easier. Finally, possible further extensions of the work are discussed. 

1. Introduction: presentation of the physical background 

The transport of protons in hydrogen-bonded systems, particularly in ice, remains a very 
interesting but also a long-standing problem. The introduction of new ideas 6om nonlinear 
physics [1,2] has provided the possibility of various approximations. The study becomes 
even more important because of the close connection with the problem of proton transport 
across biological membranes-something which could explain the fundamental properties 
of life [3,4]. 

Since the work of Bernal and Fowler [5] it has been recognized that the anomalously 
high mobility of protons in water cannot be explained by standard theories and that the 
hydrogen bonds can be modelled by a double-minimum potential. Now it is generally 
accepted that, in ice as well as in water, protons are transferred by jumps from one water 
molecule to another along hydrogen bonds and a migration of hydroxonium and hydroxyl 
ionic defects [6] takes place. However, there are still many questions to be answered as 
the detailed structures of the defects and the mechanism of their mobility are not yet well 
understood. As the soliton concept has been discussed extensively for the case of transport 
in biological macromolecules, it could be a possible mechanism in some of these processes 
[7,81. 

In the case of studies of the proton transfer processes in ice lattices it is usual to consider 
one-dimensional chains, called Bernal-Fowler filaments [SI. The geometry of these lines is 
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Figure 1. Positive (a) and negative CO) charged ionic defects in the H-bonded chain (side groups 
are not shown). 

not crucial and they can be considered as quasi-one-dimensional chains. In the normal state 
of the chain each proton is connected to an oxygen atom by a covalent bond on the one 
hand and a hydrogen bond on the other. It is accepted that the proton potential energy curve 
has the form of a double well with two minima corresponding to the two equilibrium states 
of a proton between two neighbouring oxygen atoms. A proton can be transfemed either 
in the form of ionic defects or in the form of orientational (bonding or Bjer") defects 
(figures 1 and 2). 

0-H ... 0 - H  ... 0 - H  1" H - 0  ... H - 0  ... H - 0  1.1 

L t H - 0 .  .. H - 0 .  ..H-0 0 - H  ... 0 - H  ... 0 - H  (b) 

Figure 2. We present (a) positive (D) and (b) negative CL) orientational defects (Lese Bjer" 
fault?,. as the violation of one of Bema-Fowler rules. demand the presence of one and only one 
bonded proton ice-like smcture. 

AI the beginning, charge transfer occurs at the expense of successive proton 
displacements between neighbouring oxygen atoms, i.e. the passage of an ionic defect. 
The position of the proton in the hydrogen bond is determined by a double-well potential 
as previously discussed (figure 3(a)). The proton displacement is conwolled by the protonic 
elastic interaction induced in the model. 

e e e w w  e e w ( b i  e 
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Figure 3. A double-well proton potential model of a positive ionic defect (a) and of a positive 
orientational defecl CO). 

When a proton approaches a molecule occupying a boundary of the chain it may form 
a covalent bond with the oxygen atom of the molecule and then the original proton moves 
to a neighbouring molecule. When this process is repeated, we have transport of protons 
along the chain. The chain then changes its state and the transport of protons is not possible 
in the same direction. This can be done only when a reorientation of OH groups takes 
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place by the second defect mechanism, known as Bjenum faults in ice. To allow proton 
transport, it is necessary to return all the molecules to their initial positions. The motion 
of an orientational defect involves simple successive rotations of OH groups starting at one 
end of the chain and finishing at the other. Owing to these rotations we have the creation of 
a pair of D and L defects moving to different ends, and this can take place in any internal 
part of the chain. A sequence of rotations of all the molecules in a filament returns the 
chain to its original state. It follows that the motion of another proton can occur only after 
the passage of a Bjerrum defect. In figure 3 we present a potential model of a positive 
bonding defect. 

The resultant proton current has two mutually related continuous components. The 
passage of a proton along a chain corresponds to the transport of 0.64 of the proton charge, 
while the remaining fraction, of 0.36, is carried by a Bjerrum defect [9]. This model of 
transport was proposed by Sokolov [lo]. The theory of motion of Bjerrum defects has been 
described in [ I I ,  121. The transport of protons in the form of solitons was firstly considered 
in [ l ]  and [131. Antonchenko et ai [l] have found, in their model, analytic solutions in the 
continuum approximation only for particular solitary wave velocities. Further work [2,14] 
has given solutions for a far greater range of velocities and has also given remarkable 
results about the stability of these solutions. The problem was further pursued in a number 
of papers [15-18] in which a variety of theoretical extensions have been achieved. Other 
works have given a satisfactory number of numerical results [I91 which contribute to the 
validity of the ADZ model. This model was really a successful attempt to approximate and 
explain mechanisms which occur in the atomic scale study. 

The aim of this work is to examine the influences of dipole-dipole interactions on 
protonic conductivity in H-bonded chains. Simultaneously, we propose an analytical study 
of the nonlinear dynamics of the proton motion. In our study we consider an improved 
one-dimensional lattice model based on the ADZ model [1,20] for H-bonded chains. 

The emphasis is especially placed on the contributions of the dipole interactions due 
to the proton motion. The existence of electric dipoles along the chain can exert a strong 
influence on the system response and the proton conductivity can be enhanced. Since the 
discrete system is not always convenient for algebraic manipulations, we are faced with the 
continuum approximation of the microscopic model. This kind of approximation leads us to 
a Q6 equation which admits various localized solutions according to several selections and 
conditions. We conclude that ionic and orientational defects remain of the same importance 
as in previous works [2,6] in order to explain protonic conductivity. Our study could also 
be extended in other related domains, but this will be the aim of future works. 

The paper is organised as follows. In section 2 we construct the model which is based 
on the ADZ model. We introduce an appropriate bonding scheme in which the dipole 
interactions are of great importance. Then in section 3 we present the Hamiltonian of the 
system and obtain the equations of motion for a particular form of the dipole moment. The 
study is then limited to the case for which the heavy-ion sublattice is supposed to be fixed. 
Section 4 deals with the continuum approximation of the discrete system, which finally 
leads us to an equation of Q6 type, describing the proton motion. In section 5 we show 
different types of localized solution. Numerical simulations corresponding to the solutions 
are given and discussed in section 6. An analytical study of the system potential is examined 
in section I. Section 8 discusses the results, and possible further extensions of the work are 
evoked. 
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2. Construction of the model 

The model for an H-bonded chain, similar to that introduced by Antonchenko er al [l], 
consists of two interacting sublattices of harmonically coupled protons (mass m) and heavy 
ions (hydroxyl groups for ice or complex negative ions of mass M), as shown in figure 4. 

I Chochliouros and J Pouget 

Figure 4. The one-dimensional lattice madel for a hydrogen-bonded diatomic chain. We 
distinguish: (a) the harmonic potential for the heavy ions and (b) the double-well potential for 
protons. 

This model can give an idea of the Bernal-Fowler filaments in ice [5]. It also represents 
more complex biological macromolecules in membranes [3,41. Each proton lies between a 
pair of heavy ions usually referred to as ‘oxygens’. The proton is connected by a covalent 
and hydrogen bond with the two neighbouring oxygens. It is possible for a proton to jump 
from a position closer to one of the oxygens to a position closer to the next one. The proton 
overcomes the potential barrier. Next, the covalent and the hydrogen bond exchange their 
positions. The basic idea of the ADZ model is that the coupling between oxygen atoms and 
protons can provide a mechanism [ 141 which changes the potential barrier that protons have 
to overcome to jump from one molecule to another one, and facilitates the proton motion. 

The bonding scheme that we use, consists of an hsrmonic oxygen-oxygen and 
hydrogen-hydrogen coupling, a nonlinear onsite potential and a nonlinear hydrogen-xygen 
interaction. The proton experiences a double-well potential [21,22] which can be chosen 
in the form 

2 q Y “ )  = CO(1 - Y 3 Y i )  , (1) 

Because of the introduction of the onsite potential, we can expect topological excitations 
for the protons. In this paper we do not insist on the origin of the above potential, but it is 
assumed that the detailed interaction mechanism results in such a potential. 

We give a schematic representation in figure 4. We note that in equation (1) y .  denotes 
the displacement of the nth proton with respect to the centre of the oxygen pair. eo represents 
the height of the potential barrier and yo is the distance between the potential minima. We 
also note that in the chain, a local redistribution of charges is observed, as a result of 
the proton motion. A compression of the proton subsystem gives an extra positive charge 
while a rarefaction can provide an extra negative charge. For this reason, both ions can be 
connected with the motion of a certain type of domain wall [I]. 

The existence of electric dipoles in the chain, because of the electric charges, leads ns 
to account for the mutual interaction between the dipoles. Protons belonging to a given 
chain are correlated with each other through the dipole interaction of 0-H dipoles, which 
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provides a dominant contribution to the proton effective potential. In the general case, if 
we consider two successive dipoles, the interaction energy is defined by the expression 

where p1 and pz are the magnitudes of these dipoles and Rlz  is the distance between their 
centres of mass. The dipoles can be considered as a point, i.e. the length of each dipole 
is considerably less than R12. This kind of assumption if fulfilled for a system of two OH 
oscillators arranged as in an ice or water network, If we note Pn, Pntl the dipole moments 
of the nth and (n + 1)th cells and T the distance between them, we can obtain an expression 
similar to equation (2) which describes the dipole energy and it is written as follows 

where €00 is the dielectric constant in vacuum. Previous works [ I l ,  121 and [23-251 have 
dealt with the problem of the dipole interactions. Along with previous works [19]. we begin 
with a discrete model because it has already been found that, when reasonable parameter 
values are considered. the solutions are rather narrow. 

3. The equations of the model 

The total Hamiltonian of the system consists of four terms 

Hrot = H p  + Ho + Hint + H d d .  (3) 

The proton part of the Hamiltonian is given as 

The first of the terms denotes the kinetic energy of the protons, the second term is the double- 
well potential while the third term represents the harmonic coupling with characteristic 
frequency w1 between neighbouring protons. The Hamiltonian of the basic sublattice of the 
heavy ions can be written as 

In the oxygen part of the Hamiltonian we consider only the relative displacement w, between 
the two oxygens in a pair, because the variation of the 0-0 distance modifies the potential 
strength undergone by the protons. The first term denotes the kinetic energy of the oxygens, 
the second term represents the coupling between oxygens of the same cell, while the third 
term stands for the harmonic coupling between neighbouring oxygen pairs and takes into 
account the dispersion. (In the original ADZ model only optical vibrations were considered 
whereas in other works 1191 acoustic vibrations were also included.) In our study and 
QI are characteristic frequencies of the optical modes. 

The Hamiltonian Hin, represents the coupling between proton displacements and heavy- 
ion displacements. This term takes into account the fact that, because of the proton 
displacement, the distance between the neighbour oxygen atoms can change. In other words 
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we can have a lowering of the double potential barrier due to the oxygen displacements that 
is due to the variation of the 0-0 distance. In the ADZ model we write 

I Chochliouros and J Pouger 

Analytical solutions have been obtained 1261 with a slight generalization of Hinr by changing 
the (y i  - yi)  term into a general function W(yn). In equation (6), 6 measures the strength 
of the coupling between the two sublattices and determines the amplitude of the distortion 
in the oxygen snblattice. In so far as the parameters of the model such as the harmonic 
lattice frequencies w j ,  S21, S20, the coupling constant 6,  the barrier energy €0 and the width 
yo of the potential are concerned, we note that some values have already been proposed in 
a previous paper [19], but the question still remains open as there is always the possibility 
of improving the validity of the obtained results. 

The Hamiltonian H d d  is derived from the dipole interactions. We note that the double- 
well potential considers, by its nature, the dipoledipole interactions in the case where we 
study the equilibrium state of the system. This kind of interaction becomes valuable when 
the protons move along the H-bonded chain. Otherwise, when they stay at their equilibrium 
positions the dipoledipole interaction is well described by the double-well potential acting 
on protons. 

It is known that water molecules have a permanently constant dipole moment. The 
dipoledipole energy is a function of the distance r and the angle between the dipole vector 
and the distance vector r 1271. In the present case, it is assumed that the distance r between 
neighbouring dipoles does not depend on the lattice displacement and all vectors of the 
dipole moment P. are aligned. We can easily calculate the expression for Hdd and it 
becomes 

(p is a constant which may account for the environment of the chain). The dipole moment 
induced by the proton motion is zero when proton is at either position of the oxygen or 
when it is in the middle of the distance joining the oxygen pair where the interactions are 
opposite. In figure 5 we present this law for the dipole schematically. We consider r to 
be the 0-H distance, while the 0-0 distance is denoted as R. The dipole moment of a 
water molecule 1281 is zero at ( r / R )  = 0 and at ( r / R )  = 4 ~ 1  because the water molecules 
would have become neon atoms. At ( r / R )  = 4 the hydrogen atoms are midway between 
the oxygen atom, the dipole moment is also zero and it changes sign as r / R  passes through 
0,  $ and 1. 

.... 0 ............... .....__ 0 _ _ _ _ _ _ _ _  - 
Figure 5. The microscopic elecvic dipole as a function of the proton position with respect to 
the nearest heavy ion positions. 
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The simplest form for the dipole moment P to approximate the structure of the curve 
in figure 5 can be given by a polynomial of the third degree 

pn = a(x, - X")("" - X.+l)[X. - i(X" + x.+,)] (8) 

where B is a constant. The absolute positions x, and X, are shown in figure 4 and we have 

(9) x. = nio + $0 + yn X, = nlo + W. x,+I = (n + I ) ~ O  + w.+I. 

We note that 10 is the lattice spacing (it is about 5 8, a value often met in real hydrogen- 
bonded systems). 

From the Hamiltonian (3) and after simple calculations we find the motion equations of 
the system which form a set of coupled nonlinear differential-difference equations as below 

These two equations cannot be solved analytically. For this reason any attempt of further 
mathematical analysis becomes extremely difficult. 

We study the case for which the heavy-ion sublattice can be considered as 'frozen'. 
This type of approximation is related to the inertia of the oxygen sublattice which cannot 
follow the fast proton motion especially for large velocities, and this suggests that solution 
involves only the proton displacement while oxygens stay at rest and do not practically 
participate in the motion. 

We can assume that w is very small compared to y .  In the atomic lattice, y is of the 
order of few 8, and for this reason we suppose that w is almost zero. The above assumption 
leads us to consider only the Hamiltonians Hp and H d d .  It is convenient to rewrite the 
equations of motion in a dimensionless form. Then, we introduce the units EO for energy, 
to for time and lo for length. This system of units is introduced in order to facilitate 
the numerical computations and to enable the comparison of the results with experiments. 
We can easily find the derived units mo = Eoti/l; for mass and fo = fo/lo for force. 
The next step is to introduce the dimensionless parameters 6 = m/mo, E = eo/Eoljl and 
x I  = -@21 ,6 /E~6 .  Then, the energies are expressed in eV, masses in atomic mass units 
( m u )  and displacements in 8,. This defines a time unit (tu) equal to 1.0217 x s; 
the frequency unit (tu-') is 0.9787 x lOI4 Hz which is of the order of the lattice vibration 
frequencies in solids; and the energy unit EO = 1.24 x eV. The parameters involved 
in the model are lo = 5 A, m = l(amu) and M = 17(amu) (hydroxyl group), €0 = 2 eV 
and yo = 1 A [14,19,21,22]. The parameters are consistent with the values met in real 
hydrogen-bonded systems (for instance, ice). We set U, = y,/lo, uo = yojlo, l? = Himi;, 
CO = io/to and G = 4€o/ml;. With these new units, the Hamiltonian of the proton lattice 
can be written as 
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where the electric dipole is merely given by 

P" =!&(U; - t). (12) 

Now, the equations of the discrete system describing the proton motion are reduced to 

4. The continuum approximation 

The set of nonlinear differential equations for a discrete system is not manageable. 
Therefore, the next step to the somewhat rough simplification consists in considering the 
continuum approximation. We assume that the displacements are slowly varying over the 
lattice spacing. In the approximation, only terms up to the second-order are retained and the 
contribution of higher-order terms is not significant. Moreover, terms of the form u(uX)' are 
neglected because this is the contribution of a nonlinear term involving the space variation 
of the displacement. The equation of the proton motion can be written as 

U,, - [i  + x(3uZ - f)*]uxX - aIu + plu3 - y2us = o (14) 

where we have set 

(YI Go + x / 8  PI = Go/u; + 2% ~1 = 6%.  (15) 

We note that all three parameters at. p~ and yt depend on x. which is also present in 
the factor of u x x .  Because of this last remark, further investigation becomes extremely 
difficult. Thus we try to simplify the procedure by proposing the following hypothesis: we 
can set I + x(3u2 - a )  = CO as a function of U. This function has two minima. If we 
consider a certain value of x we can find the mean value (eo) and then we set (4) as 
the coefficient of uzI. This rough approximation has significance when there is no great 
difference between the greatest and the lowest values of the function. This occurs if the 
coefficient x is considered as small enough such that 1x1 << 1. We now set (4) = U' and 
the equation for study takes on the form 

(16) 

We consider the following variable changes U = aU, f = y T ,  x = p X  with (Y = m, 
y = */PI, 0 = w,,@i/pl (it must be that y~ > 0, p1 > 0). It is also set that A =a1 y 2 .  
At last, the equation becomes 

2 3 
Ulf  - w U,, - 01111 +PIU - y1u5 = 0. 

UTT - Ux,y = AU - U 3  + U'. (17) 

We are interested in localized solutions with a constant profile, moving at a characteristic 
velocity U, that is, solutions U = U(() where ( = X - UT is a shifted coordinate. We can 
now obtain an ordinary differential equation for the single variable E .  We do not dwell on 
the algebraic manipulations to find out the different classes of solutions. 



Transport properties in a hydrogen-bonded chain model 8749 

5. Different types of localized solutions 

The equation of the proton motion presents a symmeiry, so when U is a solution then (-U) 
is also a solution. We set U1 = U(( + -co) and U2 = U ( e  + +m). We distinguish 
between types of solutions as we try to approach U2 beginning from U I ,  or the inverse. 

(a) For the solution of type I (pulse) we have U, = U' = 0. The corresponding 
mathematical expression is 

where U: = & 4 A / ( J F X 7 &  f 1) and P = 2 4 ' T / ( , / i T T 7 &  -+ 1). The (+) 
sign corresponds to supersonic waves ( / V I  > 1) and for this case we have also the condition 
0 < A .c Ao. The (-) sign corresponds to subsonic waves (Iul < 1) and for this case it must 
be necessarily considered A c 0. In both cases we have A0 = 3/16 and a' = 4A/(uz - 1). 

(b) The solution of type I n  represents akink. In this case we have two opposite non-zero 
values (U] = U,, U2 = -UO) and the expression is given by 

4330 tmh z 
[l + P(l - tanh'~)]'/'' 

U =  

Where we have defined z = $QF, P = U,"/(ZV,' - i), Q2 = 4U,3U," - $)/(U' - 1). The 
definition for Uo is given by (Ut)' = (1 + m A ) / 2 ,  as in the solution of type I, the 
(+) sign corresponds to supersonic waves (it must be additionally A < 6 and A # 0). and 
the (-) sign corresponds to subsonic waves (it must be A < f with A # 0 and A # '5) a: (c) For a solution of the type IV, we have U, = U2 # 0. After calculations, we amve 
at 

U0 
[(P + 1)tanh'z - PI1/*' 

U = *  

In this case we put P = ~ , 2 / ( 2 @  - 4). 0' = 4~,"(u," - f)/(u' - I). The constant value 
U. is now defined by (U,")' = (1 * -)/2. Once more, the (+) sign corresponds 
to supersonic waves which can be defined when we consider 6 < A c 4. The (-) sign 
corresponds to subsonic waves. Now we must consider A < f with A # 0, A # $. 

(d) Finally, a particular case (type II) occurs, when A = 4 and the solution represents 
a kink describing a transition from the state UI # 0 to the state U2 = 0. This solution, 
which exists only in the case of a supersonic wave (Iul > 1) takes the form 

with i-2 = id-) and kl is an arbitrary constant. 

variation. 
In table 1 we have gathered the possible types of solutions according to the range of A 

6. Numerical simulations 

In this section we examine the dynamical behaviour of the solutions found in the previous 
part. It is important to study the stability of these solutions as well as the validity of the 
continuum approximation. We propose a numerical scheme by directly considering the 
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Table 1. Different types of solutions aceording to he v&ia!ion of A. We present the existencc 
of a &n type of solution. 

A A > f  $ > A > $  * = A  6 > A > O  O > A  
Solutions 

Type 1 
supersonic 

5 P  I 
subsonic 

Type 11 
only 
supersonic 

Type 111 
supersonic 

Type 111 
subsonic 

Type IV 
supersonic 

Type N 
subsonic 

Solution 
exisfs 

Solution 
exists if 
A # $  

Solution 
exists 

Solution 
exists if 
A # Z  

Solution 
exists 

Solution 
exists 

Solution 
exisls 
Solution 
exists 

Solution 
exisls 

Solution 
exists 
Solution 
exists 

Solution 
exists 

Figure 6. (a) A solution of type I (pulse). We present the subsonic n r e  for Y = 0.1. 
(b)  Numerical simulation of the proton displacement. 

equations of motion (13) of the discrete system, when the heavy ions are frozen. The 
resolution is realized by means of a Runge-Kutta method of the fourth order. We suppose 
that the conditions at lattice ends are periodic or pseudo-periodic (solutions of types Il and 
EI). The initial conditions for the displacements and the velocities of each lattice particle 
are given by the analytical expression of each type of solution (l, II, JII, IV). 

In figure 6(a) we present a solution of type I, corresponding to a subsonic pulse. The 
selected parameters are OJ: = 0.065, Go = 0.00042, uo = 0.365 and x = 0.018. The phase 
velocity is U = 0.1. The width of this pulse contains about 30 particles which means that 
the continuum limit is satisfied. In figure 6(b) we present the evolution of the excitation. 
After a short lapse of time, this pulse splits into two other pulses (a positive and negative 
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(a) i, . . . ,  . . . ,  . . . ,  . . ,  , . . . ,  . , . , . . . ,  

Figure 7. (a) Solution of the pulse-type I (supersonic w e  v = 1.12). (b) T i e  evolution of the 
solution. 

one) travelling in the opposite directions. We can remark that the amplitudes of these pulses 
evolve as time elapses. The type I subsonic solution is found to be unstable. 

The supersonic case is illustrated in figure 7(a). The observed pulse is more narrow 
(compared to the previous subsonic pulse), it contains about 20 particles. The parameters for 
the simulation are W I  = 1.0, Go = 0.0025, uo = 0.365 and ,y = 0.008. The phase velocity 
is U = 1.12. We present the dynamical evolution of this pulse in figure 7(b).  The observed 
behaviour is entirely different from that of the subsonic case. We again have a pulse which 
is propagating to the left and its amplitude remains quasi-constant. Simultaneously we 
observe a secondary negative pulse travelling in the opposite direction. The supersonic 
solution is also unstable. 

In figure 8(a) we give a schematic representation of the solution of type DI. This particular 
solution corresponds to a transition from the state U = 0 to the state U = J? 12 for the proton 
displacements (equation (21)). The parameters are W I  = 1.0, Go = 0.0016, uo = 0.365 and 
the coefficient of the dipole-dipole interaction is obtained by considering A1 = which 
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corresponds to x = 0.3425. Only the supersonic case is shown with U = 1.10. This solution 
contains about five particles. The evolution time is given in figure 8(b). It is obvious that 
the profile is unstable. After the appearance of a hump in the extension of the wave front, 
this solution splits into two other pulses propagating in opposite directions; the pulse on 
the left is greater than the pulse on the right. There is a remarkable similarity between the 
evolution corresponding to this case and that of type I. This is evident since the solution of 
type II is, in fact, a limiting case of the solution of type I, when A ,  + 6. 

I Chochliouros and J Pouget 

Figure 9. ( a )  A stable kink solution of lype Ill. (b)  Numerical simulation of the proton motion. 

In figure 9(a) we present the kink solution of type III (equation (19)), corresponding to 
a proton transition from the well U = -uo to the well U = i u o .  The selected parameters 
are W I  = 1.0, Go = 0.0025, uo = 0.365, x = 0.008 and the phase velocity is U = 0.45 (for 
the subsonic case). The kink contains at least 20 particles, which means that the continuum 
approximation is valid. We illustrate the dynamic behaviour of the solution in figure 9(b). 
The kink is remarkably stable and it favours the coherent motion of protons. The supersonic 
case is qualitatively identical to the subsonic one. 

Particles 

Figure 10. (a) A solution of type N (subsonic cxse v = 0.12). (b)  Numerical simulation of 
the model for the subsonic excitation of the type IV. 
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The solution of type IV is given in figure 10(a) (subsonic case). We have considered 
the parameters W I  = 1.0, Go = 0.0012, uo = 0.365, x = 0.5 and the phase velocity is 
U = 0.12. The evolution is shown in figure IO@) where the amplitude is reduced and the 
pulse is finally reversed. Then the initial pulse is divided into two other pulses of equal 
amplitudes propagating in opposite directions. This solution is unstable. 

Figure 11. ( a )  A solution of type IV (supersonic e a ~ e  Y = 1.5). (b)  Numerical simulation of 
the proton motion corresponding to the supersonic solution of type 1V. 

Finally, the supersonic case corresponding to a solution of type IV (for a phase velocity 
U = 1.5) is presented in figure ll(a). We have set 01 = 1.0, Go = 0.0012, uo = 0.365 
and ,y = 0.5. The initial condition is slightly different from that of the subsonic case, but 
in both cases the width of the pulse is about 20 particles. We can observe that the form of 
the solution does not practically change. However, the amplitude increases gradually and 
after a finite time the solution collapses. It is evident that there exists a ‘strong’ instability. 

After the above remarks it becomes obvious that only the kink solution of type I11 
is stable. This is the reason why this kink can guarantee that a hopping mechanism of 
proton transport across the barrier of the QZ potential is valid. The movement of protons 
characterized by the stable kink solution can be interpreted as the propagation of an ionic 
defect in the H-bonded chain. 

7. Study of the potential of the system 

It can be noted that equation (17) can be derived from the following Hamiltonian 

where the potential $ is defined by 

The first term in the Hamiltonian (22) denotes the kinetic energy, the second term holds for 
the linear interaction (elastic) and the third part is the potential of @’-type. On looking for 
solutions with a constant profile and moving at constant phase velocity U, that is, a function 
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Figure 12. The potential p as a function of the proton displacement U for different values of 
A:  (a) A > 4, (b) A = 4, (c) 3 < A < a, (d) A = 6. (e) 0 c A < and (0 A < 0. 

of the variable 
motion 

= X - UT, the Hamiltonian formulation yields the first integral of the 

(24) 

where $0 is a constant of integration. Now, it is clear that the properties of the potential 
(23) play an important role in the existence and stability of the localized solutions described 
in section 6. The potential (23) is sketched in figure 12 according to the values of A. 

$(U' - l)(UC)* = @(U) -@o 

Then, several cases can be distinguished. 

(i) For A > 4 there is only one minimum of @ at U = 0 (curve (a) in figure 12) and 
no localized solution exists. 

(ii) For A such that & A < i ,  (curve (c)) the potential possesses two symmetric 
metastable minima and two maxima while at U = 0 we have the stable minimum. For this 
case, supersonic solutions of type IV can exist with $0 = min @(U) # 0. 

(iii) A particular case occurs for A = & and the potential (23) possesses three equivalent 
stable minima at U = &&/2 and U = 0 (curve (d)). A solution of type II exists for this 
situation which represents the transition from the minimum at U = 0 to that at U = &/2 
(or U = -&/2). Moreover, only supersonic waves with $0 = 0 are solutions. 

A < &. the potential has two non-zero stable minima whereas the 
minimum at U = 0 is metastable (curve (e)). The choice $10 = 0 leads to a pulse- 
like supersonic solution of type I. For @O = min @(U) # 0, we have a kink solution of 
type m, both are supersonic waves. Subsonic solutions of type IV can exist by taking 

(v) Finally, for A < 0, the potential is similar to a symmetric double-well potential with 
two symmetric stable minima at a non-zero value of U (curve (0). If @O = 0, we have a 
subsonic solution of type I (pulse-like solution) and of type III (kink). 

This discussion can be compared to the result summarized in table 1. Roughly speaking, 
the stability of the solutions is ascertained if lim{,*m U = U,, is the global minimum of 
the potential @(U). This occurs only for kink solutions of type m. Nevertheless, a detailed 
analysis based on the Lyapunov method will be in order to check the stability of every 
solutions [29,30]. 

(iv) When 0 

@O = mm @.(U) # 0. 
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A depends on x ( A  = aylyyl/p; and see equation (15)) and it determines the dipole- 
dipole interaction. If we consider the case of ice, we can choose values for the different 
parameters involved in the model which are consistent with the recent literature on the 
subject [19,28]. For a good choice of the parameters [19], x can be estimated about 0.3 .  
The banier for the effective potential can be calculated 

A@ = &[(l - 6 A )  + (1 -4A)3'2] (25) 

for A < $. In a first approximation where x/Go is rather small and going back to the 
expression of A in terms of the microscopic parameters, an estimate of the potential banier 
can be written as 

Note that, if x is neglected, we recover the barrier of the doublewell potential. It is also 
clear that the role of the dipole interaction is to lower the potential banier and proton motion 
is therefore favoured. 

8. Discussion 

This paper is a first report on the effects of the dipole-dipole interaction on the proton 
motion. This type of interaction produces an influence on the electric field of the system 
and the proton conductivity can become easier. In the framework of our model we have 
focused our attention on the dynamics of the proton sublattice. The negative ion sublattice as 
well as the rest of the atomic environment has been considered 'frozen' and their influence 
on the dynamics of the protons is therefore neglected. In real systems, protons interact 
with their neighbours via dipole-dipole interactions which have been described in a crude 
approximation, by the simple nearest-neighbour harmonic interactions. In our model we 
have introduced an additional dipole interaction term in the Hamiltonian of the system. This 
has been done in order to approach the response of the system due to the conhibution of 
these significant interactions. Thus, the proton transfer is materialized through the formation 
and migration of lattice defects, represented by topological solitonic excitations. 

The description of the ionic and orientational defects associated with the protonic 
conductivity remains of the same importance as in a' case [14]. The coupling between 
the protons and the heavy ions in H-bonded chains has a strong influence on the dynamics 
of the ionic defects in the system. In the present analytical approach we have determined 
several possibilities for the solution describing the proton motion according to the values 
of parameters, since the resulting equation possesses stable, unstable and metastable steady 
states. The existence of a equation gives the possibility of a variety of solutions in a 
greater range than in previous studies [ 1,2,14-17,191. This potential approaches the initial 
form only for certain values of x .  which is connected with the dipole interaction. Otherwise 
we may obtain different forms (as in figure 12) with five critical points, corresponding to a 
more complex transition from the one state to the other. 

We have found different types of solutions for the proton displacement. For each of 
them we have presented a direct relation with the effective potential of the system. The 
height of the effective potential barrier can be estimated to be -2 eV or -0.43 eV if we 
use two different sets of values for the parameters [ 191. For the actual values chosen for 
the numerical simulations, the height of the potential baniers that protons have to overcome 
in order to jump from one molecule to the other can be found to be decreased due to the 
consideration of the dipole interactions. 
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The problem of the continuum approximation can still be investigated, as there are other 
possible cases which can be studied in more detail. 

Another important point consists of considering, in a future work, a different, probably 
sinusoidal form of the dipole moment 1281, rather than the polynomial form of the third 
degree. The initial model can be extended and enriched by the introduction of an external 
electric field applied on the protons (something which has been achieved in technical 
applications). Previous work has been done [14,16] for constant and variable fields in time 
without the consideration of dipole interaction. As the real system is threedimensional, it 
is clear that the one-dimensional model provides a simplified description of the system. For 
this reason we can introduce damping to explain the transfer of energy to extra degrees of 
freedom. 

A further step is to consider a rotational motion of the dipoles, especially if we deal 
with nonlinear atomic chains. It would also be interesting to examine how the response 
is modified by the introduction of second-nearest-neighbour interactions and more. From 
OUT first results it is found that there are remarkably interesting mechanisms which could 
probably explain some of the most fascinating phenomena occuring at the microscopic scale. 
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